



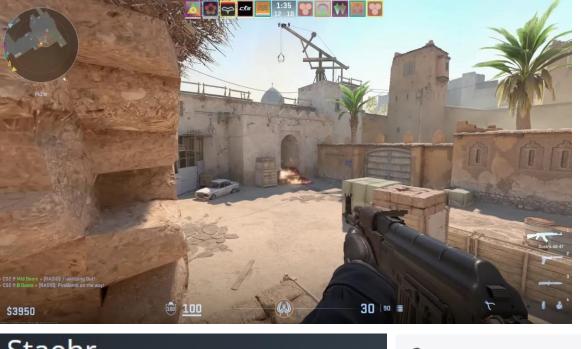


#### PIVOT: A Parsimonious End-to-End Learning Framework for Valuing Player Actions in Handball Using Tracking Data

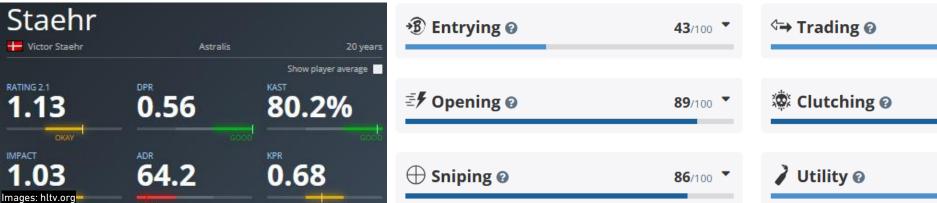
Oliver Müller<sup>1(⊠)</sup>, Matthew Caron<sup>1</sup>, Michael Döring<sup>1,2</sup>, Tim Heuwinkel<sup>1</sup>, and Jochen Baumeister<sup>1</sup>

Abstract. Over the last years, several approaches for the data-driven estimation of expected possession value (EPV) in basketball and association football (soccer) have been proposed. In this paper, we develop and evaluate PIVOT: the first such framework for team handball. Accounting for the fast-paced, dynamic nature and relative data scarcity of handball, we propose a parsimonious end-to-end deep learning architecture that relies solely on tracking data. This efficient approach is capable of predicting the probability that a team will score within the near future given the fine-grained spatio-temporal distribution of all players and the ball over the last seconds of the game. Our experiments indicate that PIVOT is able to produce accurate and calibrated probability estimates, even when trained on a relatively small dataset. We also showcase two interactive applications of PIVOT for valuing actual and counterfactual player decisions and actions in real-time.

Keywords: expected possession value  $\cdot$  handball  $\cdot$  tracking data  $\cdot$  time series classification  $\cdot$  deep learning

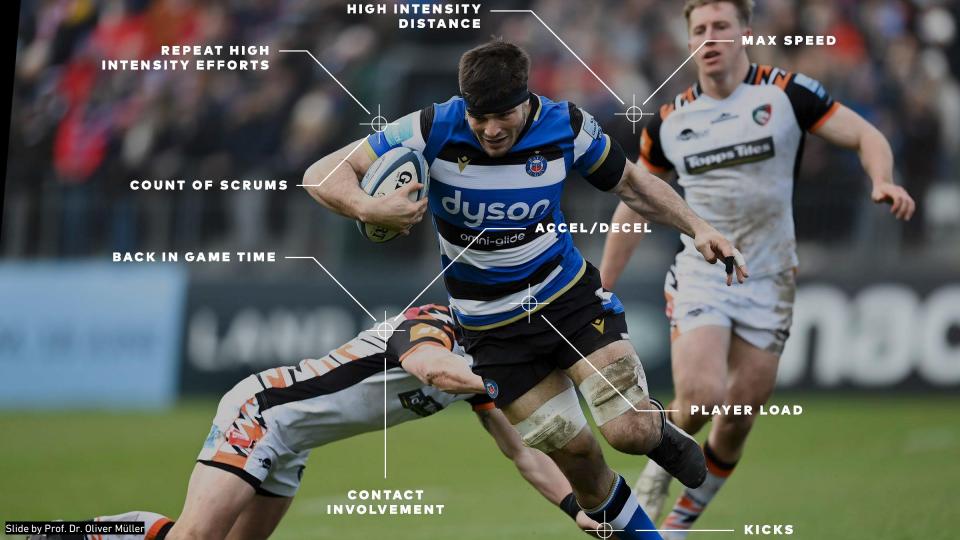






## Contents

**1** Statistics in Sports ✓ Data **Graph Neural Networks** 4 Counter-Strike



PERFORMANCE PSYCHOLOGY

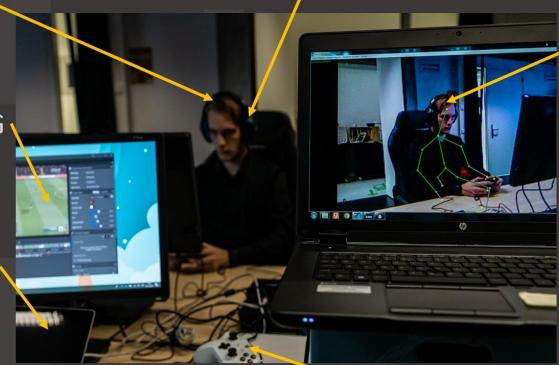
&

**TEAM ANALYSIS** 

**HEALTH** 

**EYE TRACKING** 

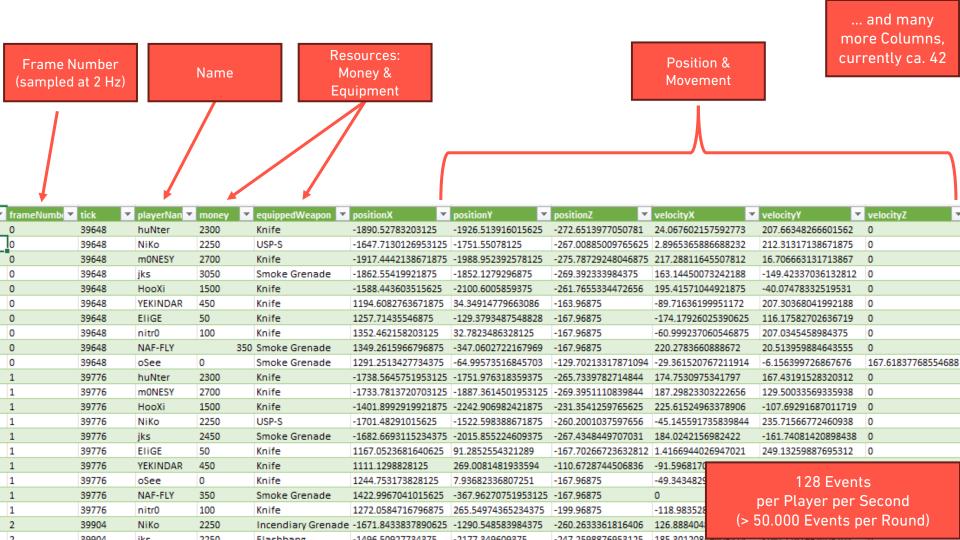
IN GAME
PERFORMANCE
ANALYSIS



PLAYER ANALYSIS

**INPUT ANALYSIS** 





#### **Contents**

1 Statistics in Sports √ Data √ **Graph Neural Networks** 4 Counter-Strike

# **Counter-Strike as Graph**

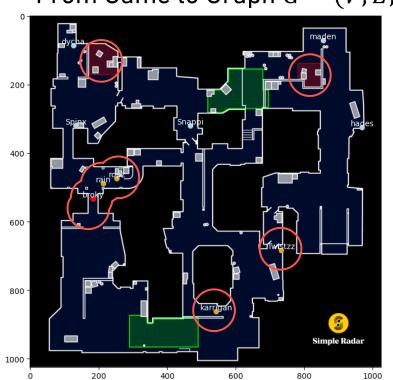
Complete Digraph

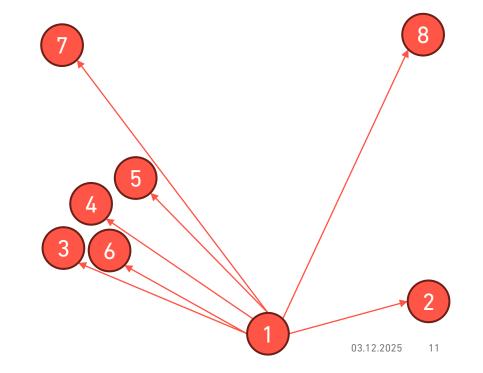
1-5: Players

6: Bomb

7-8: Bombsites A & B

From Game to Graph G = (V, E, U)





# **Counter-Strike as Graph**

Complete Digraph

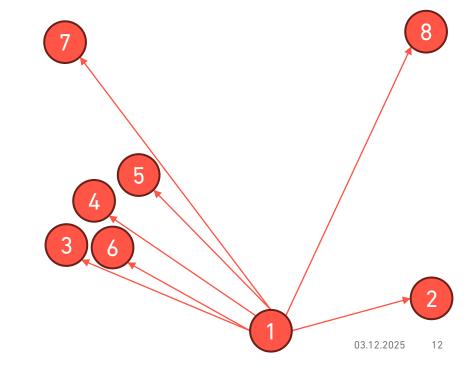
1-5: Players

6: Bomb

7-8: Bombsites A & B

From Game to Graph G = (V, E, U)

E= 0, 1, 2, 2, 2, 2, 4, 4 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0



# **Counter-Strike as Graph**

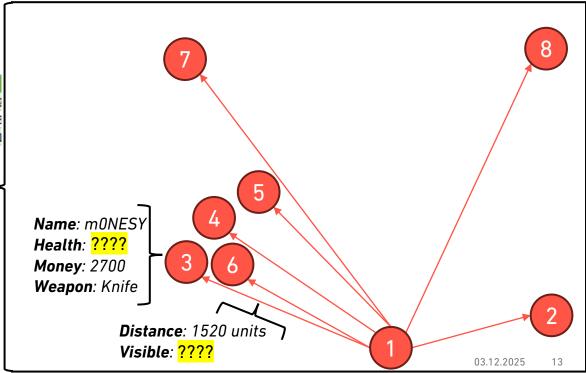
Data in the Graph G = (V, E, U) mapping.

| playerNan | money | equippedWeapon | ¥ | positionX        |
|-----------|-------|----------------|---|------------------|
| huNter    | 2300  | Knife          |   | -1890.5278320312 |
| NiKo      | 2250  | USP-S          |   | -1647.7130126953 |
| m0NESY    | 2700  | Knife          |   | -1917.4442138671 |

**Score**: 12:5

RoundWin: ????

**Time:** 1:03



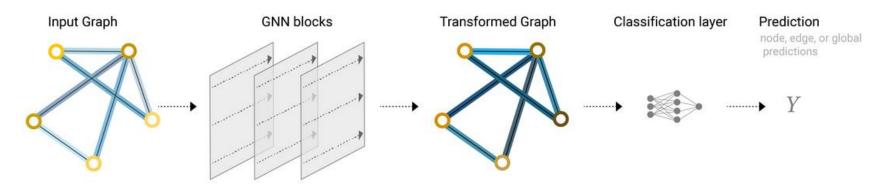


# **Graph Neural Networks**

#### **Summary:**

Just like CNNs with

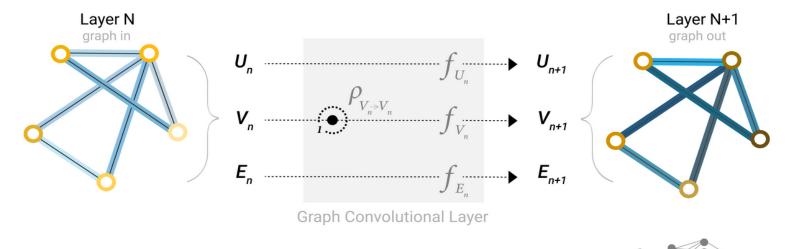
- Pooling
- Message Passing
- 1. collect neighbor embeddings
- 2. aggregate with focal element
- 3. transform



An end-to-end prediction task with a GNN model.

# **Graph Neural Networks**

https://distill.pub/2021/gnn-intro/#node-step



update function f =  $\rho$ , ...

Schematic for a GCN architecture, which updates node representations of a graph by pooling neighboring nodes at a distance of one degree.

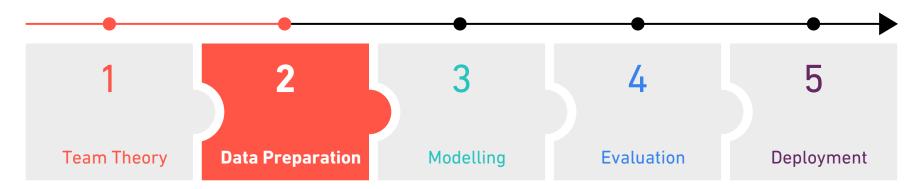
#### **Contents**

1 Statistics in Sports √ Data √ Graph Neural Networks ✓ 4 Counter-Strike

# **Technology Stack**

- PyTorch Geometric
- Awpy 1.3.1
- ESTA dataset
- Python 3.12



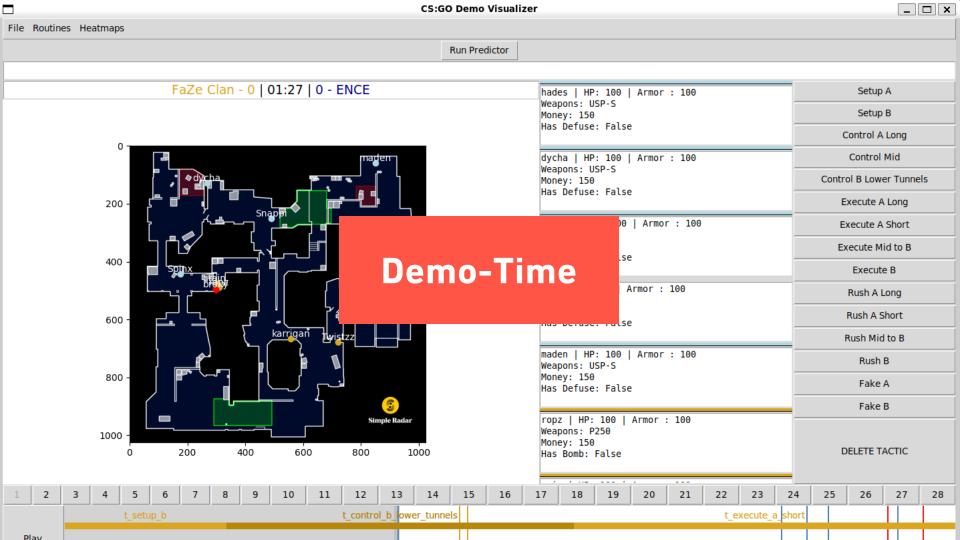


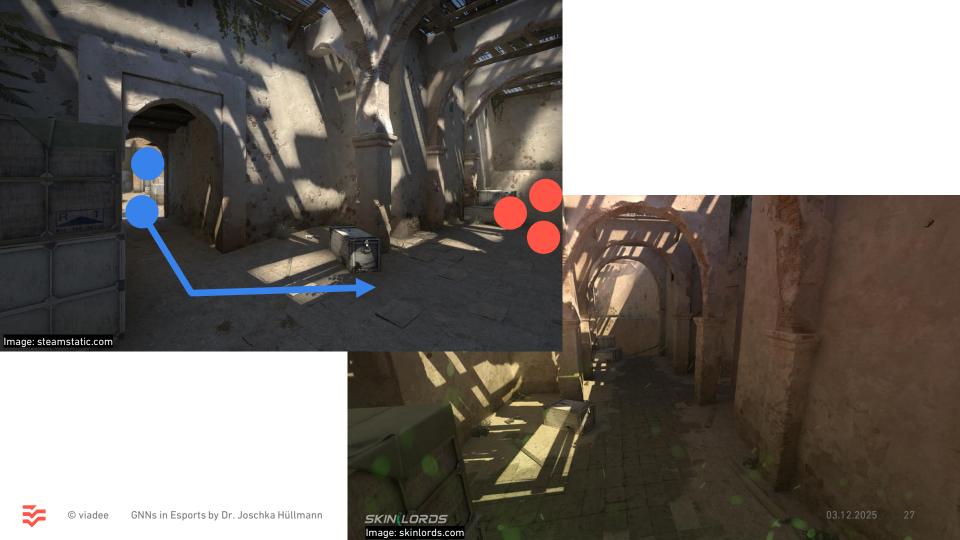


# Possession Value and Expected Threat (xT)

- Focus on teams and individuals.
- Positions and space control are important.
- Estimate tactics and when they are successful.
- Theory instead of data.



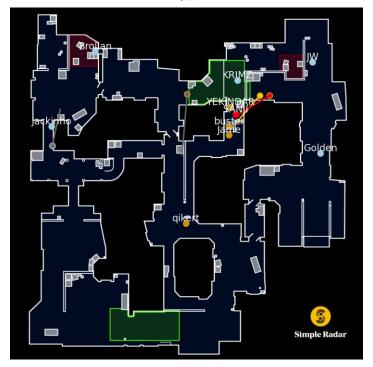




## **Tactics**

| Tactic Label              | Description                                       |
|---------------------------|---------------------------------------------------|
| t_setup_a                 | Slow map control with lean toward A site          |
| t_setup_b                 | Passive default with eventual B site lean         |
| t_control_a_long          | Gaining map control through A Long area           |
| t_control_mid             | Controlling the mid-area for flexibility or split |
| t_control_b_lower_tunnels | Slow approach through lower tunnels for B control |
| t_execute_a_long          | Structured push through A Long with utility       |
| t_execute_a_short         | Execution via short (catwalk) with nades          |
| t_execute_mid_to_b        | Mid-to-B split with CT smoke and tunnel join      |
| t_execute_b               | Full B site execute through tunnels               |
| t_rush_a_long             | Fast rush through A Long                          |
| t_rush_a_short            | Aggressive rush through short (catwalk)           |
| t_rush_mid_to_b           | Fast-paced mid-to-B attack                        |
| t_rush_b                  | Direct rush into B site via upper tunnels         |
| t_fake_a                  | Fake towards A to draw rotations                  |
| t_fake_b                  | Fake towards B to manipulate defenders            |

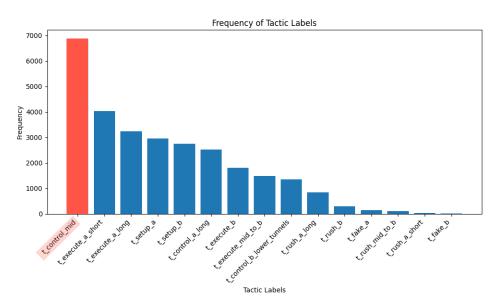
Example of player positioning during a "A short execute" tactic: 4 players are advancing on short; 1 is catching up from the middle.



#### **Annotated Tactics**

Out of >1000 games

Only de\_dust2



| Number of games labeled                  | 20            |
|------------------------------------------|---------------|
| Number of frames labeled                 | 28,468        |
| Number of <i>uncertain tactic</i> frames | 18,705        |
| Number of unique tactics annotated       | 15            |
| Most common tactic                       | t_control_mid |

Table 3. Labeling statistics

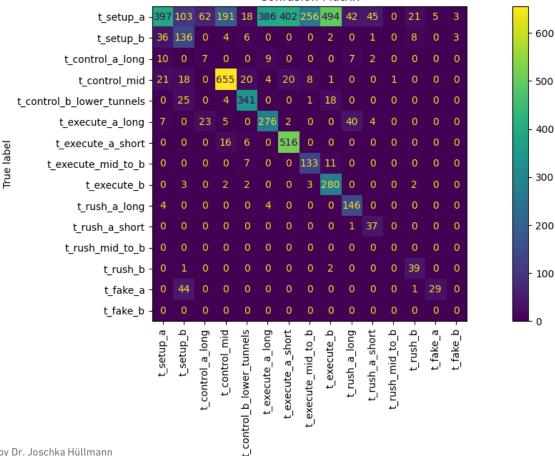
# **Data Preprocessing**

- Convert demo data to graph data
- Estimate spatio-temporal features per frame errechnen

| Number of demo files processed            | 195              |
|-------------------------------------------|------------------|
| Total rounds extracted                    | 5133             |
| Frames skipped due to issues              | 0 per game       |
| Average number of frames per round        | ≈ 186            |
| Processing time per frame                 | ≈ 1 to 4 seconds |
| # games that could be processed parallely | 64               |
| Number of node features extracted         | 29 per graph     |

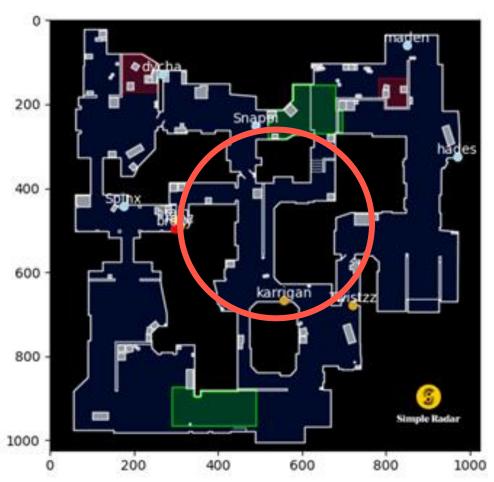








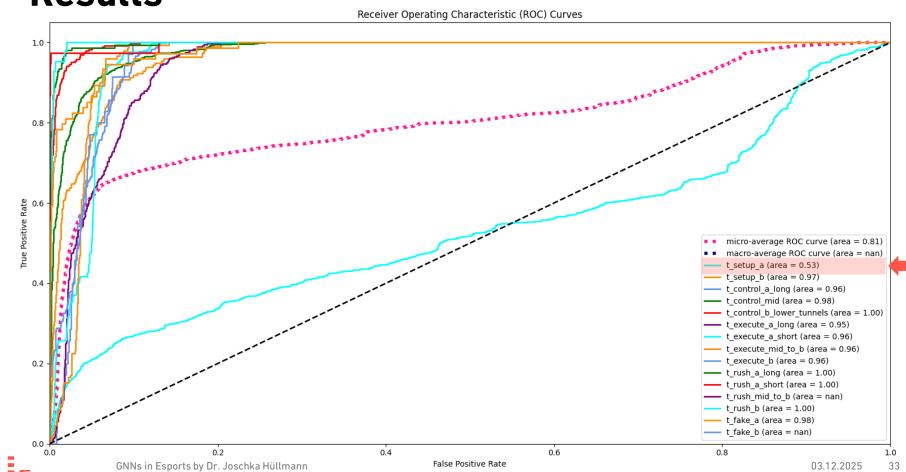
31





32

© viadee



Slide by Kirna, Vlad, & Szabolcs

Table 1. Feature combinations

| Features   | Accuracy | Recall | Precision | F1-score |
|------------|----------|--------|-----------|----------|
| Position   | 79.16%   | 0.7068 | 0.6301    | 0.6568   |
| Position + | 79.07%   | 0.7069 | 0.6130    | 0.6417   |
| Health +   |          |        |           |          |
| Armor      |          |        |           |          |
| Position + | 80.09%   | 0.7131 | 0.6517    | 0.6707   |
| Utility    |          |        |           |          |
| All Fea-   | 81.17%   | 0.7510 | 0.6643    | 0.6945   |
| tures      |          |        |           |          |

Table 2. GNN architecture combinations

| Model            | Training | Test     | F1-score |
|------------------|----------|----------|----------|
|                  | Accuracy | Accuracy |          |
| 2-layered<br>GAT | 78.04%   | 78.10%   | 0.6831   |
| 2-layered<br>GCN | 82.79%   | 81.17%   | 0.6945   |
| 3-layered<br>GAT | 77.65%   | 77.16%   | 0.6692   |
| 3-layered<br>GCN | 81.94%   | 78.78%   | 0.6672   |



# **Reading Materials**

- Sanchez-Lengeling, B., Reif, E., Pearce, A.,
   Wiltschko, A. B. (2021). A gentle introduction to graph neural networks.
   Distill, 6(9), e33.
- Pollard, R., & Reep, C. (1997). Measuring the effectiveness of playing strategies at soccer. *Journal of the Royal Statistical Society Series D: The Statistician*, 46(4), 541-550.
- Graham, I. (2024). How to Win the Premier League: The Sunday Times Bestselling Inside Story of Football's Data Revolution. Random House.

